3x^2-5(2x^2-1)+4x^2=2

Simple and best practice solution for 3x^2-5(2x^2-1)+4x^2=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-5(2x^2-1)+4x^2=2 equation:



3x^2-5(2x^2-1)+4x^2=2
We move all terms to the left:
3x^2-5(2x^2-1)+4x^2-(2)=0
We add all the numbers together, and all the variables
7x^2-5(2x^2-1)-2=0
We multiply parentheses
7x^2-10x^2+5-2=0
We add all the numbers together, and all the variables
-3x^2+3=0
a = -3; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-3)·3
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*-3}=\frac{-6}{-6} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*-3}=\frac{6}{-6} =-1 $

See similar equations:

| -8k-3=-125 | | -44=-2k | | -12+48=-3(x+3) | | p-(-5)=-3 | | 18d+–9d+9=–18 | | 1/5x-1=74 | | 2)8(x-2)=32 | | -5x-14=x+14 | | 3x-7=-14-4x | | -2(x-2)−4x−5=29 | | w/8-14=10 | | 2(4x+5)+0=8x+40 | | 22=-7x+5x | | 2(x-5)+3=27 | | -5(x+9)=6x-12 | | 3x^2+2(x^2-4)-3x^2=24 | | 5x+2+x10=90 | | 5(1+6b)+1=216 | | 5+(-3k)=20 | | -5.6=h/5+12.1 | | 8=1x+3 | | -53=5(7-8n) | | 9+11=-5(6x-4) | | r/25-5=-12 | | 13=13=x-18 | | 28=14x+15 | | 24=5+5x^2+9-x^2+6 | | 2(4x+30)+0=8x+40 | | -3=g/4 | | 13=x−18 | | x+x+58=180, | | 3-6x+3=24 |

Equations solver categories